Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
J Med Virol ; 93(12): 6653-6659, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1530185

ABSTRACT

Macrophage activation syndrome (MAS) is one of the main causes of morbidity and mortality in patients with coronavirus disease 2019 (COVID-19). This study aimed to investigate the relationship between the pentraxin 3 (PTX3) gene polymorphisms rs2305619 (281A/G) and rs1840680 (1449A/G) and the development of MAS in patients with COVID-19. The study included a total of 94 patients aged 18-45 who were diagnosed as having COVID-19 between June and December 2020. PTX3 281A/G and 1449A/G polymorphism frequencies were evaluated. PTX3 281A/G allele and genotype frequencies did not deviate from Hardy-Weinberg (HW) equilibrium in the MAS or non-MAS group (χ2 : 0.049, df: 2, p = 0.976, χ2 : 0.430, df: 2, p = 0.806). PTX3 1449A/G allele and genotype frequencies deviated significantly from HW equilibrium in the non-MAS group (χ2 : 6.794, df: 2, p = 0.033) but not in the MAS group (χ2 : 2.256, df: 2, p = 0.324). The AG genotype was significantly more frequent in the non-MAS group, while the AA genotype was significantly more frequent in the MAS group (χ2 : 11.099, df: 2, p= 0.004). Analysis of the PTX3 1449A/G polymorphism showed that individuals with the GG genotype had higher serum PTX3 levels than those with the AA and AG genotypes (p = 0.001 for both). Analysis of the PTX3 1449A/G polymorphism in patients with COVID-19 showed that those with the AG genotype were relatively more protected from MAS compared with individuals with the AA genotype. In addition, lower serum PTX3 levels are observed in patients carrying the A allele.


Subject(s)
C-Reactive Protein/genetics , COVID-19/genetics , Polymorphism, Single Nucleotide/genetics , Serum Amyloid P-Component/genetics , Adolescent , Adult , Alleles , COVID-19/pathology , Disease Progression , Female , Genotype , Humans , Macrophage Activation Syndrome/etiology , Macrophage Activation Syndrome/genetics , Male , Middle Aged , Risk Factors , Severity of Illness Index , Young Adult
3.
Nat Immunol ; 22(1): 19-24, 2021 01.
Article in English | MEDLINE | ID: covidwho-1065905

ABSTRACT

Long pentraxin 3 (PTX3) is an essential component of humoral innate immunity, involved in resistance to selected pathogens and in the regulation of inflammation1-3. The present study was designed to assess the presence and significance of PTX3 in Coronavirus Disease 2019 (COVID-19)4-7. RNA-sequencing analysis of peripheral blood mononuclear cells, single-cell bioinformatics analysis and immunohistochemistry of lung autopsy samples revealed that myelomonocytic cells and endothelial cells express high levels of PTX3 in patients with COVID-19. Increased plasma concentrations of PTX3 were detected in 96 patients with COVID-19. PTX3 emerged as a strong independent predictor of 28-d mortality in multivariable analysis, better than conventional markers of inflammation, in hospitalized patients with COVID-19. The prognostic significance of PTX3 abundance for mortality was confirmed in a second independent cohort (54 patients). Thus, circulating and lung myelomonocytic cells and endothelial cells are a major source of PTX3, and PTX3 plasma concentration can serve as an independent strong prognostic indicator of short-term mortality in COVID-19.


Subject(s)
C-Reactive Protein/genetics , COVID-19/genetics , Gene Expression Profiling/methods , Macrophages/metabolism , SARS-CoV-2/isolation & purification , Serum Amyloid P-Component/genetics , A549 Cells , Adult , C-Reactive Protein/metabolism , COVID-19/epidemiology , COVID-19/virology , Cell Line, Tumor , Cells, Cultured , Cohort Studies , Endothelial Cells/metabolism , Epidemics , Female , Humans , Male , Middle Aged , Monocytes/metabolism , Neutrophils/metabolism , Prognosis , SARS-CoV-2/physiology , Serum Amyloid P-Component/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL